Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Academic Assessment Committee: Results and Analysis

A finding is a concise summary of the results gathered from a given assessment method. Further findings should provide information necessary to make informed decisions related to improving outcomes.

Analysis of Findings

Analysis is a systematic examination and evaluation of the findings or data obtained through assessment. It is about deriving meaningful and useful information about students' learning from assessment results. Analysis of data should be a group effort. It needs to involve all program faculty as well as faculty from outside the program when appropriate.

Look for trends or patterns of evidence. Common patterns to consider:

  1. Patterns of Consistency: this type of pattern develops by studying data acquired from the same outcome over a period of time. The period of time could be from semester to semester or year to year.
  2. Patterns of Consensus: this involves disaggregating the data to determine if all populations are achieving the expected level of performance. Aggregate data (i.e. reporting an average score on an outcome measure) may hide the fact that a certain population of students is NOT achieving the expected level of performance. Data may be broken down by gender, first-generation students, non-traditional students, students of various ethnic backgrounds, students enrolled in traditional versus online classes, students enrolled in day versus night classes, etc.

Other questions to ask or situations to consider as data are analyzed include:

  • Do you need to disaggregate data to analyze results for particular variables such as method of instruction, day/evening section, campus, adjunct versus full-time faculty?
  • Is the "N" in the data set reasonable? Have proper sampling procedures been used?
  • Does the data represent an acceptable level of achievement? For instance, if data indicates that 80% of the students performed at the expected level of achievement, what happened to the other 20%? Is it acceptable that 20% of the students did not meet the minimum standard?
  • Whether a target was achieved or not, were there areas defined within the tool in which students consistently demonstrated deficiencies? Likewise, were there areas in which students’ performance exceeded expectations?
  • Did the assessment tool work? Was it appropriate? Did the tool validate student learning of a particular outcome?
  • Did the tool satisfactorily distinguish various levels of achievement?

More on Assessment Results and Analysis

Questions for Evaluating Results and Analysis

  • Did the measures used assess the learning outcome; that is, did student performance provide strong evidence about how well students achieved a learning outcome?
  • Is supporting documentation (item analysis of scores on rubrics, student work samples - artifacts, etc.) available?
  • Have results been collected over cycles and analyzed longitudinally?
Accessibility at GTC